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A MODEL FOR HYDROSTATIC CONSOLIDATION OF PIERRE SHALE

By

William Z. Savage 

INTRODUCTION

Braddock and Machette (1976) have done hydrostatic consolidation tests on 
Pierre Shale. What follows is an attempt at modeling their experimental 
results using a special case of Biot's (1941) theory of three-dimensional 
consolidation. The objective is to provide a theoretical basis for predicting 
the variation with time of pore pressure, volume of expelled pore fluid, and 
axial strains, resulting from hydrostatic consolidation of Pierre Shale.

BIOT'S THEORY OF THREE-DIMENSIONAL CONSOLIDATION

Biot (1941) considered the stress-strain response of a porous material 
having the following properties: (1) isotropy, (2) reversibility of stress- 
strain relations under final equilibrium conditions, (3) linearity of stress- 
strain relations, (4) an incompressible pore fluid, (5) small strains, and (6) 
water flow through the porous skeleton according to Darcy's Law. A brief 
review of Biot's isotropic theory will be given and applied to the particular 
case of hydrostatic consolidation. Biot's theory will then be applied to 
Braddock and Machette's (1976) experimental results.

The first of Biot's constitutive (stress-strain) relations are in 
standard tensor notation:

e .. = 1- ( a .. - _L_ s.. a ) + L. 6 . . (1) 
1J 2 y 1J 3\+2y 1J KK 3H 1J

where e-jj represents strains, o-fj represents stresses, 6.- is the Kronecker 
delta, y and x are respectively the shear modulus and Lame's constant for the 
elastic skeleton, P, is the pore pressure, and the coefficient 1/H is a 
measure of compressibility of the porous material for a given change in water 
pressure. As can be seen, equations 1 reduce to the usual elastic relations 
when the pore pressure, P, vanishes.

Because consolidation involves removal of pore water, an additional 
variable specifying the change in the amount of pore fluid per unit volume of 
porous medium must be defined. For a saturated material containing an 
incompressible fluid, this variable, 9, is equal to n - n, where n and n 
are porosities in the strained and unstrained states. Biot assumed the



relation between change in water content (porosity), pore pressure, and mean

stress (  ) to be 
3H

0 = P/R + _LL (2) 
3H

where the coefficient 1/R measures the change in water content (porosity) for 
a given change in water pressure. This second constitutive relation (equation 
2) predicts that an increase in pore-water pressure causes an increase in 
porosity, and an increase in compression causes a decrease in porosity in a 
water-saturated body.

The constitutive equations (1) and (2) may be inverted for stress in 
terms of strain to give

O-i j_ O I/

where a =   -    - =   where K is the bulk modulus and 
3H H

9 = oe^ + P/Q (4) 

where 1/Q = 1/R - <x/H.

The stresses given by equation (3) must satisfy equilibrium, or

where F^ represents the components of body force per unit mass at the point 
x-j. Substitution of equation (3) into (5) and use of the strain displacement

au.j du . 
relation e. . = 1 /2 [    +   - 1 leads to the equations of equilibrium in

J ax. ax. j  
terms of displacements

(X + w ) J_ (J!i)+ y J_ (!l!i) - a 9L_ +pF =0 (6).
ax. ax. ax. ax. 3x. J j I I' j

aP We see that the pressure gradients -   affect the displacements like a body
force. 9xj

An additional relation is needed to describe the flow of pore fluid in 
response to changes in pore pressure. According to Darcy's Law, the rate of 
flow of fluid, V.j , at a point, defined by the volume of fluid crossing a unit



area per unit time, is proportional to the gradient of pore pressure at that 
point, or

V. = -k 5L- (7) 
ax.

where k is a constant called the permeability.

Assuming the pore fluid to be incompressible, continuity requires the 
increase of fluid content per unit time in a volume of porous solid, or
r 39J 22- dv , to equal the volume of fluid enterinq per unit time through the
V at -/ 
surface of the volume, or 'V.n-ds, where n- is an outward normal to s. We
have, then,

( 77 dv ' ~sVl ds
at

which, by the divergence theorem of Gauss, is

at v axj 

or, finally, the statement of continuity:

aa av i  +    = 0 (8).
at ax. 

substituting equations (4) and (7) in (8) leads to,

!^- + 1/Q if- (9).
ax.dx. at at

The four equations (6) and (9) in the four unknowns u^ and P constitute 
the basic equations in Biot's (1941) theory of consolidation.

HYDROSTATIC CONSOLIDATION OF ISOTROPIC POROUS SOLID

Consider the cylindrical specimen of porous rock shown in figure 1. The 
specimen is jacketed so that fluid flow is parallel to the x axis. Under 
hydrostatic conditions QH = a2 2 = a33 = ~a anc* because the porous rock is 
assumed to be isotropic e^ = e2 2 = e 33 or eku = 3en and from equations (3),

ekk = 3en = «LJL^ (10).
KK K

Because fluid flow occurs only in the * l direction equation (9), the statement 
of continuity, reduces to,



Figure 1.--Cylindrical specimen of length h. Boundary conditions on pore
pressure are as shown.



k !?E- a SL 3- [oP - a] + 1/Q 2L (11),
ax x 2 K at at

where we have used equation (10) for e^. Also, because the confining
pressure, a, is independent of time equation (11) reduces to,

ax x 2 K Q at
(12)

In equations (9) and (12), the coefficient 1/Q is a measure of the amount 
of water than can be forced into a porous material when the volume of material 
is kept constant. For most rocks the compressibility of the mineral 
constituents is small; thus 1/Q » 0. Further, because of this small 
compressibility and because of the small compressibility of water, changes in 
water content and volumetric strains are approximately equal. Such a 
condition is satisfied when a=l and 1/Q=0 in equation (4). Then, since 
1/Q = 1/R - o/H and a = K/H, we have for rocks with o=l and 1/Q=0, R=H=K where 
K is the bulk modulus of the porous matrix and in particular equation (12) 
becomes,

(13)
ax x 2 c at 

where C, the coefficient of consolidation for this case, equals kK.

In Braddock and Machette's (1976) experimental apparatus, a number of 
different drainage configurations are used. In the present model, we will 
assume that the end of the specimen x =h (fig. 1) is drained so that here 
P=0. Also, no flow occurs at the end x =0 (where the pore pressure is

j\ p 
measured) and thus by Darcy's Law (equation 7)   = 0 at Xj =0. This is

3x

equivalent to their drainage configuration la (Braddock and Machette, 1976, 
p. 24).

Thus, the distribution of pore pressure during hydrostatic consolidation 
is given by a diffusion-type equation for pore pressure (equation 13) subject 
to the initial condition,

P = -a t = 0, 0 < xx < h, 

and boundary conditions,

P=0 Xj = h, t > 0

=0 x,=0, t>0.



The solution to equation (13) subject to these conditions is found in 
Carslaw and Jaeger (1959, p. 97) and is,

p = 4o ~ (-l) n e-C(2n+l)2 ir
IT n=0 (2n+l) 2h

n (2n+l)h-X]. (2n+l)h+X!
= o [1 - z (-l) n {erfc        + erfc        }] (14),

n=0 2(Ct)i/2 2(Ct)V2

where erfc is the complementary error function. The second form of the 
solution (14) is most suitable for small times.

The pore pressure measured at x L =0 is,

p = 4a ~ (-l) n e -C(2n+l)2 * 

IT n=0

= a [ 1-2 I (-D n erfc (2n+1)h ] (15). 
n=0 2(Ct)V2

r*±.

Defining the dimensionless variable T = -   we write the dimensionless
4h2

expressions for the pore pressure at x =0,

oo

P/o = 1 - 2 z (-l) n erfc (2n+l) Tr/41 1 /2 
n=0

(16) 
IT n=0

The first form of equation (16) converges rapidly for small x and the second 
form converges rapidly for large x. The variation of P/o with x is shown in 
figure 2. From equations (16) and figure 2 we see that P = a when x = 0 
and P/a+0 as
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The axial strain field is given by substituting equation 14 in equation 
(10) or,

o - p - <* eii -    
3K

A °° / i\na -C(2n+l) 2 ir 2 t/4h2 (2n+l)x! 
= _°L [1 Z iliLl C os       -1 ]

3K ir n=0 (2n+l) 2h

(2n+l)h-xi (2n+l)h+xi
= II z (-D n [ erfc       + erfc       ] (17). 

3K n=0 2(Ct) 1 /2 2(Ct) 1 /2

The axial displacement field is obtained by integrating equations (17) with 
respect to x^ At x r =h the axial displacement is u^h-pQ, where h0 is the 
original length of the specimen. The total axial strain measured in the

h-h 
consolidation experiment is then given by e =    (change in length of the

3 h o specimen over the original length) or,

= h " h ° = 2_ [ i I 1 e -C(2n+l) 2 Tr 2 t/4h2 _ 1 -j 

a h 3K if 2 n=0 (2n+l) 2

= 2o (Cl) 1 /2 (- w . 1/2 + 2 z (-D n ierfc  ^  ] (19), 
3K h2 n=0 (Ct) 1 /2

where ierfc represents the integral of the complementary error function 
(Carslaw and Jaeger, 1959, p. 483).

2 pj.
Again, with T = -  , we have the dimension!ess expressions for the

4h2 
total axial strain,

3Ke a _ 8 r 1 -(2n+l) 2 r -
n=0 (2n+l) 2

e

= li [ T i/2] [ w .i/z + 2 E (-l) n ierfc  01- ] (20), 
IT n=0 2T 1 /2

3Ke a
where the second form is most suitable for small T. The variation of    is

a
shown in figure 3 (left-hand side). Note from equations (20) and figure 3
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that e = 0 for T = 0 and e =   as T-H». Thus for large times, when thea a 3K
pore pressure (fig. 2) vanishes, the specimen reaches a final total axial
elastic compressive strain given by e = -a/3K.a

Braddock and Machette (1976) measured the volume of water expelled from 
samples during consolidation. This was done at the end x^h (fig. 1) in their 
experimental drainage configuration la. The volume of fluid crossing unit 
area per unit time, V, during consolidation is given by Darcy's Law (equation

7) where $  is given by the gradient with respect to x of equation (14). At

x =h then,

V = -2kq £ e"C < 2n+1 ) 27r2t/4h2 

h n=0

=  ^°  [1 + 2 E (-l) n e - n2h2 /ct] (21).
\TTv/uJ / H   J.

The total volume of fluid, Vj, crossing the end x3 =h of the sample up to a 
time t (the volume measured by Braddock and Machette) is then given by 
integration of equations (21) or,

t
V T = irr2 / V dt 

o

P - -C(2n + l) 2 TT 2 t/4h2 
[ 1 -  E ®                ] 

ir2 n=0 (2n+l) 2

Ct ji/2 U-V2 + - ( _ 1} n . nh
K h2 n=0 (Ct) 1 /2

Equations (22) are written in dimension! ess form as

KV * e-(2n+l) 2 i

irr2 ha if2 n=0

2 E (-l) ierfc-_] (23). 
TT n=0 2T 1 /2

We see that equations (23) are identical in form but opposite in sign to 
equations (20) for the dimension!ess total axial strains. This is a 
consequence of the assumption that changes in water content and volumetric

10



KV T
strains are approximately equal. The variation of      with T is shown on

irr2 ha

the right-hand side of figure 3. We see that the amount of fluid expelled is 
zero at x=0 and approaches a fixed value at large T. This fixed value is 
equal to the negative of the total change in fluid content of the sample as 
can be seen from the definition of change in fluid content 9, the change in 
volume of fluid per unit volume, and equations (2) and (10). As the pore 
pressure goes to zero in equations (2) and (10) the final change in fluid 
content and porosity in a saturated sample is then 9 = r\ - n = -a/K where K 
is the bulk modulus of the porous matrix. The total change in fluid content 
is then -irr h a/K which is the negative of the total volume of fluid expelled 
at x^h. Hence, the volume of fluid that can be removed depends on the 
compressibility of the porous matrix, 1/K, and the confining pressure a. 
Increasing a or decreasing K leads to an increase in the volume of fluid 
removed and a further decrease in porosity.

HYDROSTATIC CONSOLIDATION OF A TRANSVERSELY ISOTROPIC SOLID

Up to this point in the theoretical development for hydrostatic 
consolidation the porous solid has been assemed to be isotropic. However, 
Pierre Shale, like most sedimentary rocks, is transversely isotropic. Such a 
material has one set of properties in the plane of the bedding and a different 
set of properties normal to the plane of the bedding. To be consistent with 
the experimental procedures of Braddock and Machette (1976) we will take 
planes parallel to the x^2 plane on figure 1 as the plane of the bedding and 
directions parallel to the x3 axis as normal to the bedding. For this case, 
where XQ is the axis of elastic symmetry, equations 1 are written,

3

n
EI E! E 2

P/3H!

_
22 =    n +    -   a33 + P/3H X 

EI E! E2

-v2 v2 
33 =    an -   a22 +    + P/3H

E2

2(1 + Vl ) 
12 = [        ] a 12

e!3 =    a !3

e23 =   a23 (24),

11



where E is Young's modulus and vi is Poisson's ratio in the plane of the 
bedding, E is Young's modulus, v2 is Poisson's ratio, and y 2 is the shear 
modulus normal to the bedding plane. The coefficient I/HI 1S a measure of the 
compressibility of the porous material in the bedding plane for a given change 
in pore water pressure and 1/H 2 has a similar meaning for porous material 
normal to the plane of the bedding. 1

The relation between water content, pore pressure and stress given by 
equation (2) for an isotropic porous solid becomes in this case,

OH + a22 033 
8=       +    + P/R (25),

ou ouoni on 2

where 1/R measures the change in water content for a given change in pore 
water pressure.

Consider a hydrostatic jacketed test in which the pore pressure is equal 
to the negative of the hydrostatic pressure; an = a22 = a 33 = -a, P = a. 
For a saturated porous solid 6 = n - n   If the pore fluid and the mineral 
constituents are assumed to be incompressible there will be no change in 
porosity or e = 0 in this test and from equation (25) we find,

2H 2 + HI 
1/R =       ,

1 2

and in general,

an + a22 033 o , 
8 =        +    + [    +    ] P (26).

oni oH2 oni oH2

If the pore fluid is now allowed to drain out under hydrostatic stress 
the change in volume, e^, will be approximately equal to the volume of water 
squeezed out, e. After a sufficient time the pore pressure will vanish and 
from equations (25) and (26),

euu = e ii + e22 + e 33 = E   "   "  
E! EI E2

1 - 2v2 On H
+ [      ] <j 33 = e =   

3Hi 3H 

and we see that,

1 To interpret I/HI and 1/H2 consider a jacketed sample under no external 
loads; an = a22 = 033 = 0^2 = <*23 = a is = 0- A tube is attached to the 
jacketed sample and water under a known pressure is pumped in. The resulting 
strains are measured and I/HI and 1/H 2 are found from equations (24) or,

e ll e22 633
l/3Hi =    =    and 1/3H 2 =    .

12



^2

E 2

3H 2 E 2

Then, for the special case of a saturated porous solid with 
incompressible mineral constituents and an incompressible pore fluid, 
equations (25) and (26) become,

0ii vj_ v 2 1 - v t v2
[      -   ] P

E 2 E! E2

V2 1 - Vj_ V2
e22 =    an +    -   a33 + [      -   ] P 

EI E! E 2 E! E2

-v2 v 2 a33 1 - 2v2
e33 =    an -   a22 +    + [       ] P

E 2 E 2 E 2 E2

2(1 + Vl ) 
e 12 = [        ] a 12

e23 = - a23 
M

l-\>i v2 1 - 2v2
8 = [     -   ] (a u + a22 ) + [       ] a33

EI E 2 E 2

2(1 - Vl ) (1 - 4v2 )
+ [        +        ]P (27). 

EI E 2

Darcy's Law governing the flow of fluids in porous solids becomes for the 
case of transverse isotropy,

Vl - -kl »E.

v - k ap v 2 - -K
ax2

V 3 = -k 2 iL. (28)
ax 3

13



where k ][ is the permeability in the plane of the bedding and k£ is the 
permeability in directions normal to the plane of the bedding.

The equation of continuity (equation 8) for the case of transverse 
isotropy is,

3t 3X! 2 3X2 2 3X 3 2

Substituting equation (27) for 8 in equation (29) we arrive at,

*i i + -22)

(29)

kl [ . + . ] + k2
3x22 3x3 2

l-2v2 3a 33 2(l-Vl ) (l-4v2 ) , p
+ [     ]     + [       +       ] ^ (30).

E 2 3t E]. E2 3t

Since the cylindrical sample is jacketed so that fluid flow occurs only 
in the x direction, and the confining pressure (an = a22 = a33 = -a) is 
independent of time, equation (30) reduces to the form of equation (13) except 
that the coefficient of consolidation, C, is replaced by C , which is defined 
by,

l ) (l-4v2 ) ,
1/d = [       +       ] = J_ (31).

k^ E i E 2 k^K

Again we have the initial and boundary conditions, 

P = -a t = 0, 0 < xx < h 

P=0 t > 0, Xi = h

^-=0 t > 0, Xl = 0,

and pore pressures are given by equations (14) and (15) with C replaced by 
C . The pore pressure at x =0 for the transversely isotropic case is the, in 
dimension! ess form,

oo

P/o = 1-2 z (-l) nerfc (2n + 1) H/4T 1 /2 
n=0

(32) 
IT n=0 (2n + 1)

14



Equations (32) are identical to equations (16), except that T =
4h2

Hence, figure 2 can be used to obtain the pore pressure in the transversely 
isotropic case.

The strains resulting from hydrostatic consolidation are obtained from 
equations (27) and can be written,

en = e22 =    C P - a ] 
3Ki

e33 = J_ [ P - a ] (33), 
3K2

 j 1 - Vj V£ 1 - 2v2
where 1/3K! =    =      -   and 1/3K 2 =      . Following the same

1 1 2 2

arguments that led to equations (19) for the total axial strain we arrive at 
the dimensionless form,

a 7T2 n=0 (2n + I) 2

= li [ T i/2 ] [ ^1/2 + 2 z (-l) n ierfc -HI- ] (34). 
11 n=0 2T V2

Equation 34 is of the same form as equation (20) except that K is replaced by

K, and T =     and hence the time variation of e a in the transversely 
1 4h2 a

isotropic case can be obtained by using figure 3.

Arguments similar to those given in the isotropic case lead directly to 
the dimensionless expression for the total volume of fluid expelled at x = h,

KVT _ l _ 8_ ~ e-(2n + l) 2 x
TT2 n=0

= ili/l [ w .i/2 + 2 z (-D n ierfc   ̂- ] (35), 
11 n=0 2T 1 /2

where K is given by equation (31) and T =      . Again this is seen to be
4h2

of the same form as the expression (equation 23) for the isotropic case and

15



thus the total volume of expelled fluid in the transversely isotropic case can 
be obtained from figure 3.

In summary, the time variations of pore pressures at x =0, total axial 
strains, and total expelled fluid volumes for hydrostatic consolidation of a 
transversely isotropic porous solid can all be obtained from figures 2 and 3 
provided appropriate bulk moduli (K and K) and an appropriate coefficient of 
consolidation, C can be found. We will now consider how these constants can 
be found from a particular hydrostatic consolidation test.

APPLICATION TO A PARTICULAR HYDROSTATIC CONSOLIDATION TEST

Figures 4, 5, and 6 show respectively the variation with time of the pore 
pressure, the axial strain and the total expelled fluid volume for Braddock 
and Machette's (1976, fig. 13, p. 36) hydrostatic-consolidation test 152. The 
test was carried out under a confining pressure of 400 bars (40 MPa) with the 
bedding parallel to the x^2 plane on figure 1, and with a drainage and pore 
pressure measuring configuration consistent with that shown on figure 1.

Following the usual procedures for matching theoretical and experimental 
curves the data in figures 4, 5, and 6 was plotted on translucent 
semi logarithmic paper on comparable scales to figures 2 and 3 and horizontally 
shifted until "best fit" was obtained. The resulting ratio of T to t yields 
the consolidation coefficient,

where h is the original sample length (5 cm). Comparing the experimental 
points of figures 4, 5, and 6 with the theoretical curves of figures 2 and 3 
we find that in all cases the experimental and theoretical points are within 
15 percent of each other when C x = 2.81 X 10-6 cm2 /sec.

To find the constant K I we match points between the dimension! ess 
theoretical curve (fig. 3) for e and the "best fit" curve of figure 5. For
example, at 700 hours (fig. 5) e = -0.0101 and the comparable point ona

3Kl£
figure 3 at T = 0.7 is given by     = 0.6. Substituting the known values

a = -400 X 106 (_40 MPa) and e = 0.0101 and solving for K, yields 
cm2 a l

= 7.92 X 109 ( 00792 GPa ). 
cm2

16
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In the same manner the constant K can be found by comparing the 
dimension!ess theoretical curve for Vj (fig. 3) and the "best fit" curve of

figure 6. We find that K = 2.84 X 109d^e- (0.284 GPa).
cm2

Having determined C and K we can next determine the permeability in the 
axial direction, k^ from the relation C l = I^K (equation 31). Solving for k l 
we find it to be 9.86 X 10- 16 cm3 /sec/dyne/cm which is 9.99 X 10- 10 darcys 
or 9.60 X 10- 13 cm/sec. This permeability is similar to but somewhat larger 
than the value (5.6 X 10- ltf cm/sec) obtained by Braddock and Machette (1976) in 
test 152.

3(1 - v2 ) 
Also, as K and K are known, K 2 =        can be found from equation

(31), that is, from, E2

1/K 

= [

2(1 - Vl ) (1
= [ +

2(1 - Vl ) 2v2
_ +

EI E 2

- 4v2 )

1 - 2v2

E 2

= 1/3 [ _ + - ] . 

K l K 2

Solving for K we see that K 2 = 1.24 X 10 9 dyne (0.124 GPa). Hence, at the
2 cm2

end of consolidation when P = 0, e33 , the strain perpendicular to bedding, is 
predicted from the last of equations (33) to be -0.107. This is roughly 6.4 
times greater than the final axial strain predicted by equation (34) and shown 
on figure 4. Braddock and Machette (1976) found the strain perpendicular to 
bedding to be 1.1 to 2.6 times as large as strains parallel to bedding in 
hydrostatic consolidation at 600-bars confining pressure, so the predicted 
value may be somewhat large.

CONCLUSIONS

Although the theory presented is only a first attempt at modeling 
laboratory hydrostatic consolidation of Pierre Shale, it appears that it can 
be used to estimate the time variation of pore pressure, volume of expelled 
water, and axial strains and especially the long-time behavior of these 
quantities. Also, because the theory has been applied with moderate success 
to only one hydrostatic consolidation test, comparisons with other test data 
should be made which, no doubt, will force further theoretical refinements.
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